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Wild Moments in Statistics

Nowadays, most risk managers are well aware of the danger of applying thin-tailed
distributions to asset performance prone to extreme events. The fact that the widely used
normal distribution tends to assign a near zero probability to events four to five standard
deviations from the mean is well-known. Portfolio and value-at-risk (VaR) models no
longer assume normality for the price movements of the underlying assets. The relentless
battering from scholars and publicists like Mandelbrot and Taleb brought home the
message that risk management is not about “normal” events but about what is happening
in the distribution’s tails, where extreme events reveal themselves.

Definition

There is confusion on the definition of what a long, heavy, or fat tail is. We can even
wonder how to define a tail. Although this makes an interesting discussion, for the purpose
of this paper we can steer away from these problems since most of us will recognise the
phenomena when we see them. A parallel can be drawn with the designation of “richness”.
There are many ways to define this state; however, we usually are well aware of who is rich
and who is not. For convenience’ sake, we typically settle for a demarcation such as the top
ten or twenty per cent of the ranked incomes earned in a country.

Income distribution

Ranking individual income and wealth and assigning the relative probability is a classic
example of a long tailed graph: the Pareto distribution. Vilfredo Pareto (1848-1923) was an
Italian sociologist and economist who studied the uneven distribution of wealth and
income of Italy. He observed that 20% of the Italian citizens possessed 80% of the land.
This 80%/20% principle is widely used to describe other unevenly distributed
observations.
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Figure 1: Distribution of spendable household income in The Netherlands in 2010; the blue line showing the
average income (source: CBS)

If we look at spendable income per household in The Netherlands we can model this
distribution with a Pareto probability density function (PDF).
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Figure 2: Pareto distribution of spendable household income in The Netherlands in 2010

The Pareto shows the income on the horizontal axis and the probability or likelihood to
earn at least such an income on the vertical axis. The area under the curve indicates the
percentage of the households. Looking at this income distribution, we can make a couple
of observations.

1. The distribution has one tail at the right-hand side. The Pareto function is one-
tailed. In our model there is a hard limit on the left presented by zero euros. On the
right, the limit is not in sight. Theoretically, there is a ceiling if we know the income
of the household with the highest earnings. In risk management, where losses are
monitored, the tail will typically appear on the left. By flipping the sign from + to —
we can also model left tail events. Some distributions, such as the normal
distribution and the student’s t, are two-tailed distributions.

2. We can see that the distribution is skewed to the right; with the mass of the graph
on the left and the tail pointing to the right. Skew, in statistical terms, measures the
degree of symmetry of a distribution. A completely symmetrical distribution, such
as a normal distribution, has a skewness of zero. The Pareto distribution in the
graph has a strong positive skewness. Intuitively, we see that if the mass of the
distribution is pushed to the left, the graph’s tail at the right-hand side becomes
longer and is lifted up. Skewness is an indicator of long or fat tails.

3. We also notice that the distribution has a long tail indicating that there are
households with very high spendable incomes. Although, only a small part of the
population consists of high-earners, their numbers cannot be ignored. Contrary to
the normal distribution, which in effect does not allow for occurrences beyond four
or five standard deviations from the mean, the Pareto displays values that are far
from the centre. The more we move to the right, the smaller the likelihood
becomes that there are still households making that much money.

Fat and heavy tails

We mentioned that we would recognise a long tail when we see it. Some probability

functions include fat tails, others do not. Below in figure 3, the graph zooms in on the
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tails of a normal, a lognormal, a student’s t, and a Pareto distribution. It is clear that the
normal distribution does not display a tail, while the latter three distributions do.

(O Cverlay Chart 1 =[]
_I_Edit Miew Q‘ver_ta'y _Ereferences Help
25,513 Trials Frequency View (Fittered Values) [#] Enable Rotation

Overlay Chart 1

Frobability
fouenbaiy

| .Normal .LognormalD S‘rudent'st. Pareto |

Figure 3: Tails of four distributions compared

All three of them have long tails, and the Pareto seems to be a bit fatter.

The study of fat tailed distributions is, for obvious reasons, a well-studied topic in risk
management. Risk managers are not so much interested in what is “normal” but are
interested in what happens in extreme cases or in tail events. Naturally, we sense that fat
tail distributions reserve a large part of their surfaces for the tails since this is where the
trouble lurks. The more of the distribution’s surface is in the tail, the higher the probability
of tail events becomes. Fat tailed probability density functions (PDF) demonstrate a low
speed of moving toward the horizontal X-axis. Therefore, this acceleration factor
determines the fatness of the tail. Let’s take a look at the following function:

k® —
¥™  Where k and « are constants > 0

From the formula above, it becomes clear that with larger o’s the denominator increases
and the value of the fraction will accelerate toward zero. Smaller values for alpha will
produce fat tails. The alpha («) is referred to as the tail parameter or tail index. Working
with Excel and using scatter charts we can quickly get a feel for the behaviour of the
distribution with various alphas. When we define, for instance, a Pareto distribution, we
have to provide the alpha.
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Fat Tails for Various Alpha’s
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Figure 4: Fat tails for various alphas; smaller alphas produce fatter tails

Fat tailed distributions pose specific problems to portfolio managers and, in extreme cases,
might annul the benefits of risk diversification and portfolio management.

Portfolio management

Modern portfolio theory is built on the assumption that combining assets in a portfolio will
reduce the risk and that this portfolio benefit can be quantified. For years, portfolio theory
has reached beyond traditional instruments such as stocks and bonds and is now applied in
many areas including loan and insurance portfolios. Apart from the expected return,
default, or claim, the standard deviation of the underlying instruments is a key input
parameter. In combination with the correlations of the components, the overall riskiness of
the portfolio can be calculated. Therefore, it is crucial that the standard deviations of the
portfolio inputs are known and can be relied upon. Fat tails might put a spoke in the
portfolio wheel of fortune. Let’s take a look.

In statistics, “moments” denote the statistical tools used for characterising and analysing
data sets. The first moment is the average of the data set, the second moment the variance
(which equals the standard deviation squared), and the third moment is the degree of
symmetry or skewness. The fourth moment is kurtosis which measures the pointiness of a
graph. A standard normal distribution has a kurtosis of three. Therefore, a kurtosis in the
range from zero up to three indicates a graph flatter than a Gaussian curve. A kurtosis
larger than three produces a pointed chart. I will not discuss the calculation of the
moments, but it is worth mentioning that all four formulas contain a factor that measures
the deviation of the expected, average value. This value is raised to the power one, two,
three, or four corresponding to the four statistical ‘moments’. So, the kurtosis, for example,
contains an exponentiation with a power four. It is easy to see that these exponents may
accelerate the calculation values and result in large numbers. The kurtosis is the most
sensitive value in this respect, followed by the skewness, variance, and the mean. Hence,
the moments are in reversed order, from fourth to first, in terms of sensitivity to extreme
values. Kurtosis and skewness are the canary birds in the coal mines warning for danger yet
to come.

If we return to our Pareto distribution of the spendable income in The Netherlands and
use Oracle Crystal Ball to do the statistical analysis we notice that both skewness and the
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kurtosis are very high: = 47 and = 4227 respectively. These values are far from the zero
and three of a standard normal distribution.

Statistic Assumption values
Trials 100,000
Base Case 0.00
Mean 3202525
+ | Median 18,564 .24
Mode
Standard Deviation 2382260
Wariance 7,026,228 501.75
Skewness 4663
Kurtosis 422684
Coeff. of Variahility 262
Minimum 11,550,023
Maximum 10,%09,753.12
Mean Std. Error 265.07

Figure 5: Statics of the Pareto distribution of spendable household income in The Netherlands 2010

High values for the third and fourth moments might, as we have discussed earlier, be the
harbingers of trouble ahead. Trouble, for the risk manager, translates to fat tailed
distributions with relatively high probabilities for extreme events. The Latin saying goes
canda venum, the poison is in the tail. Therefore, let’s take a closer look at the tail behaviour
of the distributions discussed.

Tail behaviour

Instead of doing the statistical works for the complete distribution, we could also choose to
limit our analysis to just the tail. To keep things simple, we define the tail as the area of the
graph starting at the 90" percentile.
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Figure 6: Tail of a Pareto PDF defined as the area beyond the 90th percentile

For the just tail, we can repeat the calculation of the four moments: average, variance,
skewness, and kurtosis. Analysing the tail with our statistical tool kit brings about some
singularities for fat-tailed distributions. As it turns out, for heavy or fat tailed distributions
one or more moments are undefined. Undefined, in our case, means that the kurtosis
cannot be determined. Of course, the formula still works and we get a result for the
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kurtosis calculation, but as we include more observations, does not stabilise, on the
contrary: it goes berserk.

Large numbers

This phenomenon conflicts with the law of large numbers, which teaches that the more
observations are included in the calculation, the more stable and reliable the result will
become. Say, we would like to assess the average height of male adult football supporters in
a stadium. It is understood that there is no need measuring all fifty thousand supporters
and that a sufficiently large sample will do. As the sample size observed becomes larger, the
mean value will get closer to the real mean of all fifty thousand. The larger the sample, the
more stable the number. Once we have measured, for instance, a thousand adults, adding
another thousand measures will not change the average and other moments much.
Remarkably, this is not the case for our tail analysis of heavy and fat tailed distributions. In
the case of heavy and fat tails, their statistical moments go wild and refuse to solidify.

Extreme values

A tool commonly used in extreme-value theory is the mean excess plot. Eatlier, we have
defined, maybe somewhat arbitrarily, the tail as the part of the graph beyond the 90"
percentile. Continuing our football supporters’ example, we call someone tall when he is in
this quantile. The mean excess is the average of the tail which provides the mean extra
height of what we have classified as a tall supporter. The extra height is the excess height
that comes on top of the length at the starting point of the tail. If we start moving the
threshold from the 90 petcentile to the 91, 92" and so on, we can expect this excess
height to decline. So, there is a diminishing average excess height. This is not the case,
however, for fat tails. Here, the mean excess is accelerating. The same goes for the excess
plot of the standard deviation. As we move further down the tail, the situation becomes
wilder and wilder.
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Figure 7: Excess plots for mean and standard deviation for super fat Pareto tail

This is bad news for risk managers. If the variance and standard deviation cannot be
determined, the traditional portfolio theory cannot be applied. After all, the standard
deviations of the components of a portfolio are crucial input for the portfolio model. The
wild statistical moments wipe out the idea of diversification.

Seeking alpha?

Above we discussed the a-parameter, defining the fatness of a tail. The uncontrolled
behaviour of the various statistical moments is linked to the a-value. Distributions with an
alpha above four the moments are stable. Below four, however, the kurtosis starts floating.
Below three, the skewness follows suit, and under two, the variance and standard deviation
lose solid grounds. Finally, for alphas smaller than one even the mean becomes
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unanchored. This way, the alpha presents a classification method for the fatness of
distribution tails.

In the investment world, seeking alpha has become a winged phrase and it is also the name
of one of the most popular investment sites. Alpha, in this case, represents the value with
which a portfolio outperforms the exchange. The alpha discussed in this paper is of a
different nature: an indicator of the fatness of the tails and of risk. Given the serious
impact fat tails can have on the portfolio management approach chosen, it seems
recommendable to watch the tail alpha as well.

It is time for a new investment website called zziling alpha. The domain name is still
available!

Amsterdam, Jan 23rd, 2012
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